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By measuring the heat dispersion behind a heated wire stretched across a wind 
tunnel (Taylor 1921, 1935), the Lagrangian velocity autocorrelation was deter- 
mined in an approximately isotropic, grid-generated turbulent flow. The tech- 
niques were similar to previous ones, but the scatter is less. Assuming self- 
preservation of the Lagrangian velocity statistics in a form consistent with 
recent measurements of decay in this flow (Comte-Bellot & Corrsin 1966, 1971), 
a stationary and an approximately self-preserving form for the dispersion were 
derived and approximately verified over the range of the experiment. 

Possibly the most important aspect of this experiment is that data were avail- 
able in the same flow on the simplest Eulerian velocity autocorrelation in time, 
the correlation at  a fixed spatial point translating with the mean flow (Comte- 
Bellot & Corrsin 1971). Thus, the Lagrangian velocity autocorrelation coefficient 
function calculated from the dispersion data could be compared with this cor- 
responding Eulerian function. It was found that the Lagrangian Taylor micro- 
scale is very much larger than the analogous Eulerian microscale (76 ms compared 
with 6.2 ms), contrary to an estimate of Corrsin (1963). The Lagrangian integral 
time scale is roughly equal to the Eulerian one, being larger by about 25 yo. 

1. Introduction 
One of the most striking properties of turbulence is its ability to disperse fluid 

particles. Not only is turbulent dispersion intrinsically interesting, but it is 
fundamental to heat and mass transport problems. The most natural co-ordi- 
nates for dispersion studies are the material (Lagrangian) ones, but Lagrangian 
statistical functions are considerably less accessible, both theoretically and 
experimentally, than the corresponding spatial (Eulerian) ones. Thus, experi- 
mental comparisons of statistics in the two kinds of co-ordinates can prove to be 
enlightening and useful. 

Ever since Taylor’s (1921) classic work on ‘diffusion by continuous move- 
ments’ attempts have been made to compute the Lagrangian velocity auto- 
correlation function from dispersion measurements in isotropic flow. Typical 
were the moderately successful measurements of Uberoi & Corrsin (1953), where 
scatter made the calculations of Lagrangian correlations very rough indeed. 

t Present address: School of Engineering, Tel-Aviv University, Israel. 
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Townsend (1954) did not have sufficient confidence in his dispersion measure- 
ments to extract Lagrangian correlations, but he was successful in collapsing the 
Uberoi/Corrsin data onto a single curve by assuming similarity. 

Mickelsen’s (1955) measurements of dispersion in the core region of a duct 
are sometimes quoted in atmospheric dispersion literature as evidence that the 
Lagrangian and Eulerian correlations are similar in shape. This inference would 
be incorrect, because the measured standard deviation of the concentration 
profile was linear with downstream distance for the entire range of his measure- 
ments, therefore resulting in a Lagrangian correlation coefficient approximately 
equal to 1.0. 

Among the several other experiments in ‘isotropic’ flows, that of Micheli 
(1968) is particularly interesting. He measured the dispersion behind a heatedwire 
in a grid-generated turbulent flow of water. One of his objectives was to confirm 
Saffman’s (1960, 1962) analysis for the interaction of molecular diffusion with 
the turbulent diffusion by using a fluid (water) of molecular diffusivity different 
from those of previous measurements (air, helium and carbon dioxide). However, 
his confirmation appears to be unconvincing because of relatively large scatter. 
Similarly, Mickelsen’s (1960) data exhibited scatter of the same order of magni- 
tude as the molecular diffusion estimated by assuming statistical independence 
of molecular and turbulent phenomena. Micheli also calculated the Lagrangian 
velocity autocorrelation coefficient. There appears to be a discrepancy between 
his measured dispersion and the calculated Lagrangian microscale, his computed 
microscale appearing to be too small by a factor of 2 or 3. 

An earlier empirical estimate of the effect of molecular diffusion was made 
by Kistler (1956). By measuring the temperature cross-correlation function 
perpendicular to the mean flow and perpendicular to the tagging wire, he 
obtained a measure of the mean thickness of the ‘flapping’ hot-air sheet. 

Townsend’s (1951) original detailed discussion on the initial effect of molecular 
diffusion on a small contaminant (e.g. heat) spot was corrected by Saffman 
(1960, 1962). Tennekes & Lumley (1972, p. 242) also considered the problem, 
although they said nothing about Saffman’s interesting result that for very small 
times the turbulent-molecular interaction can actually reduce the gross mole- 
cular diffusion below the amount for molecular conduction alone. 

In one of the most recent measurements of dispersion of foreign particles in 
grid-generated turbulence, Snyder & Lumley (1971) estimated that their 
smallest and lightest particles moved essentially like fluid particles, thus allow- 
ing calculation of the Lagrangian velocity correlation from the particle dispersion. 
The data appear to be too scattered at  small times to allow them to estimate the 
Lagrangian microscale. 

In addition to measurements of mean temperature, the r.m.s. values, skew- 
ness, micro- and integral scales and probability distribution of temperature 
fluctuations were measured in a turbulent boundary layer as well as in the grid- 
generated turbulence. The probability distribution of pulse and gap widths 
of the temperature signal was also measured (Shlien 1971), and will be published 
in the future. 
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FIGURE 1. Co-ordinate system. 

2. Fluid mechanical apparatus 
The closed-circuit wind tunnel used in this experiment and the flow in its test 

section are described by Comte-Bellot & Corrsin (1966, 1971). Background 
‘turbulence ’ levels in the test section, 1.0 x 1-3 m in cross-section by 10 m long, 
are less than 0.1 %. To equilibrate the average turbulent kinetic energies of the 
grid-generated streamwise and cross-stream components, the tunnel was de- 
signed with a 1.27: 1.0 secondary contraction downstream of the grid (figure 1). 

Since most of the Eulerian data reported by Comte-Bellot & Corrsin (1971) 
were taken in the turbulence generated by a biplane, square rod, polished dural 
grid with a 5.08cm mesh M ,  and solidity 0.34, the same grid and conditions 
were used in these measurements. The mean velocity U, approaching the grid 
was I0 m/s and thus the test section mean velocity was 12.7 m/s. The Reynolds 
number R,, based on the Taylor transverse microscale and r.m.s. component 
velocity, decreased from 72 at the beginning of the test section to 61 near the 
end. 

Comte-Bellot & Corrsin also reported various velocity correlations in space 
and time, including the most basic Eulerian velocity double correlation in time, 
at  a point moving with the mean flow. This is essentially an Eulerian autocorrela- 
tion. Thus it will be possible to compare this with the measured Lagrangian 
velocity autocorrelation in time. 

3. Measuring equipment and procedures 
A platinum wire (diameters of 0.0127 and 0.127mm were used), stretched 

across the wind tunnel, was heated electrically with direct current to almost 
glowing, thereby tagging fluid particles. Overheat ratios of 0.3-0.5 were used 
and tension was maintained in the wire by suspending a weight from it. Using the 
‘film’ temperature (average of wire and ambient temperatures) to identify an 
effective kinematic viscosity, the maximum Reynolds number was computed 
to be less than 40 in all cases, i.e. below the critical (vortex shedding) Reynolds 
number. The concept of an apparent source location was used to compensate for 
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finite tagging-wire diameter. As a check on the effect of tagging-wire diameter, 
some measurementswererepeated with the two sizes of wire. The smaller diameter 
tagging wire was normally used for the 'short-time ' dispersion measurements. 

Temperature was measured using 90 yo platinuml10 yo rhodium resistance 
thermometers having a sensing element of diameter 0-63 pm, and two lengths - 
5 mm (resistance 3 kCl) and 0-5 mm. A slight bow was deliberately put in the wire 
to improve its lifetime considerably over those of straight wires (having some 
tension). A Shapiro & Edwards current control panel was used as the current 
source ( N 0-2 mA) and as a means of subtracting the signals from two resistance 
thermometers - one traversing, the other sensing ambient temperature in the 
test section, outside the thermal wake region. 

The output from the current control panel was passed through a Honeywell, 
model A20B, d.c. amplifier and then integrated for 90s (set on a Cramer clock) 
using a calibrated chemical integrator (Model SI 100, Self-organizing Systems 
Inc.) to obtain the mean. Typical drifts resulted in an apparent temperature 
change of 0.003 "C. Where accuracy demanded it, the temperature difference 
was measured with the tagging wire cold, then hot, and immediately afterwards 
cold again. The average of the first and last readings was subtracted from the one 
with the tagging wire hot, to reduce the error due to drift. 

4. Relationship between dispersion and Lagrangian correlation 
In a decaying isotropic turbulent field, the Lagrangian correlation R(t, to) has 

been shown to be related to the dispersion F2(t, to) by Townsend (1954) : 

R(t,  to )  = - a"[BY"t, to)]/at at,, 

where to is the tagging time. (Because of the use of a secondary contraction in the 
wind tunnel, all times are to be considered travel times from the grid 

ax 

unless indicated otherwise.) To reduce the number of necessary measurements, 
Townsend ( 1954) assumed self-preservation of particle (i.e. Lagrangian) velo- 
city statistics. With this assumption and effectively the BatchelorITownsend 
(1948) energy decay and scale growth laws, 

d 2 ( t )  cc (At)-l, L,(t) cc (At)&, 

he found a local time scale t ,(t) = L,(t)/v'(t) cc At, where v'(t) is the r.m.s. turbu- 
lent (Eulerian) velocity component in the y direction. Using this assumption for 
time scaling, he deduced the following expression for the Lagrangian velocity 
correlation : 

The A indicates that the time of the apparent origin of the turbulence is sub- 
tracted, i.e. At = t - t * ,  with t* the (extrapolated) value of t  at which vl-1 = 0. 
Thus with the self-preservation assumption, the Lagrangian correlation may be 
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calculated by measuring the dispersion function for only a single tagging time. 
Several studies have since used Townsend’s ‘ renormalization’, notably that of 
Micheli (1968) and Snyder & Lumley (1971; they reference some unpublished 
applications by other investigators). 

However, it has been reasonably well established both experimentally (Comte- 
Bellot & Corrsin 1966) and theoretically (Saffman 1967) that better power-law 
approximations for decay are more like 

v’2(t) cc (At)-1‘25, L,(t) cc 

where L, is the transverse Eulerian integral length scale, so that the local time 
scale = L,(t)/v‘(t) cc M At. Thus the time rescaling here is identical to 
that of Townsend, although justified by different decay behaviour. Using these 
measured decay laws together with the assumption of self-preservation of particle 
velocity statistics, it  can be shown (Shlien 1971) that 

%!A(7) = d 2 [ i z 2 ( ~ ) ] / d ~ 2 ,  (1) 

where 9 L [ 7 ( t ,  t0)l = v ( t )  Wo)/v’(t)  v’(t,), 
V ( t )  = aY/at = particle (Lagrangian) velocity, 

m t ,  t o ) ]  = Q m, tO)/L,(t) L,(tO), 
r(t ,  to) = Cln (Atlato), 

and C is a time scale such that the local time scale t,(t) = L,(t)/v’(t) = AtlC. This 
result can be verified by substituting the expression for Z 2  back into (1). For 
T < 6, the integral term in the expression for &??(T) is less than 3 yo of Y(r) .  

Prom the inverse of (I) ,  it  can be shown that as 7 -+ 0 (i.e. t -+ to) 

andas7-f co 

where T,, the Lagrangian integral time scale, is defined by equation (2) below. 

5. Interpretation of mean temperature profiles 
It seems reasonable (and can be proved analytically; see, for example, Corrsin 

1962; Saffman 1963) that, if there were no molecular diffusion, the mean tempera- 
ture 8 measured at  a point downstream from an ideal source (a Dirac delta- 
function source) would be equal to the probability that a particle be found at  that 
point. Therefore the second moment of the mean temperature profile, 

is equal to F, the dispersion. In  the absence of any non-speculative theory valid 
for the entire range of consideration,-/- the measured dispersion was corrected for 

t Saffman’s (1960) result is valid for ( K / Y )  o ( t  - to)  Q 1 in his notation, or 7 Q 0.09. 
17-2 
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molecular diffusion by assuming statistical independence of molecular and turbu- 
lent phenomena, as suggested by Taylor (1935). It is hoped that the effect of the 
interaction between turbulent and molecular diffusion is small. This hope is 
supported by Mickelsen (1960) and others, as well as by the results of these 
measurements. 

6.  Results 
The dispersion was measured downstream of a line source (tagging wire) a t  

two stages of decay (i.e. two streamwise positions in the flow, Uoto/M = 42 and 
98; see figure 1 for co-ordinate system and notation). Mean temperature profiles, 
in the direction perpendicular to the mean flow and the tagging wire, were taken 
for distances (from the tagging wire) up to 7.0 m for the Uoto/M = 42 case and up 
to 5-Om (to nearly the end of the test section) for the other case. The standard 
deviations of the dispersion a t  these positions were 5.60 em and 4.45 cm, respec- 
tively. 

In  figure 2 ,  a typical mean temperature profile is plotted, the different symbols 
indicating the order in which the data were taken. By plotting on probability 
paper the integral of the symmetrically faired curve, a Gaussian function was 
fitted to the data. The resulting Gaussian distribution, shown in figure 2,  fits 
the data to within the accuracy of the measurement. 

~F(T)  and z2(7) are tabulated in table 1 while z(7) and z2(7) are plotted for 
short and long times (figures 3 (a) and ( b ) ) ,  respectively. The collapse of the data 
taken with the two tagging-wire positions is within the scatter for practically the 
entire range, consistent with the self-preservation assumption, and suggesting 
that the correction for molecular diffusion is reasonable. (The ratio of the mole- 
cular to turbulent diffusion for the same dimensionless time T depends on the 
tagging time to. For example, for T = 0.25, the estimated correction for molecular 
diffusion is 6.3 % of Z 2  if Uoto/M = 42 and 7.8 yo if Uoto/M = 98; for 7 = 5 ,  the 
corrections are 0.75% and 0.89% respectively.) Three of the last four points 
(largest 7 )  taken with Uoto/M = 98 appear to deviate slightly beyond the scatter. 
No effect of resistance-thermometer wire length or tagging-wire diameter is 
detectable. The long-time asymptote appears to have been 'reached', and the 
short-time asymptote is exhibited in figure 3 (a), having the predicted slope of 1.0. 
The apparent source position was found, by extrapolation, to be at  T = - 0.008 
f 0.001. 

From the measured dispersion, the Lagrangian correlation coefficient may be 
computed using (1) .  Since double differentiation of a set of data is a difficult 
operation, the Lagrangian micro- and integral scales a, and T,, were estimated 
first, and were used as guides in estimating the correlation function. The scales 
are defined by 

stationary Lagrangian (time) microscale: a;' = - &[dz9?L(7)/d~2],= o ,  

i ( 2 )  
stationary Lagrangian (time) integral scale: T, = / : ~ ~ ( 7 )  d7. 



A measurement of Lagrangian velocity and autocorrelation 26 1 

P 
- AE AE e=-z- 

aGlR 3 

G=3 x lo3 (amp. gain) 

R=3x103 Q 
Z = = O . ~ X I O - ~ A  

& = I . ~ x  10-3pc 

Ax=2.44 m 

- AE AE e=-z- 
aGlR 3 

G=3 x lo3 (amp. gain) 

R=3x103 Q 
Z = = O . ~ X I O - ~ A  

& = I . ~ x  10-3pc 

-2 -1  0 1 2 

I I 

Ax=2.44 m 

I I I 1 I 

-2 -1  0 1 2 

FIG~LE 2. Typical mean temperature profile. 

Dimensional stationary scales can be defined (Comte-Bellot & Corrsin, 
1971) using a dimensional stationary time variable 

where t,. is a reference time, to be selected. The micro- and integral time scales 
a,, Tr corresponding to the variable time 9’- will then be the time scales of the 
flow made stationary to correspond to the time tr. By comparing (3) with the 
previously defined dimensionless time variable 

it is obvious that 
a, = (At,/C) a7 and TT = (At,./C) TT. 

The actual (decaying) Lagrangian time scales will be defined subsequently. 
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0.129 
0.171 
0.213 
0.254 
0.375 
0493 
0.608 
0.608 
0.7 20 
0.720 
0.829 
0.935 
1.14 
1.34 
1.34 
1.52 
1.52 
1.70 
1.70 
1.70 
1.70 
1.87 
1.87 
1.87 
1.87 
2.04 
2.04 
2.04 
2.20 
2.35 
2.64 
2.91 
2.91 
3.17 
3.64 
4.44 
5.12 
5.70 

Uoto/M = 42 
- A 

1 

2 F  

0.0167 
0.0318 
04490 
0.0689 
0.146 
0.274 
0.383 
0.386 
0.588 
0,528 
0.694 
0.857 
1.22 
1.64 
1.62 
2.02 
2.14 
2.34 
2.57 
2.50 
2 4 8  
3.01 
2-94 
3.14 
2.96 
3.34 
3.35 
3.26 
3.88 
4.22 
5.22 
5.95 
6.03 
6.77 
8.58 

11.3 
14.6 
17.0 

2 2  

0.0167 
0.0318 
0.0490 
0.0689 
0.146 
0.274 
0.383 
0.386 
0.588 
0.528 
0.694 
0.856 
1.22 
1.64 
1.61 
2.01 
2.14 
2.34 
2.57 
2.50 
2.47 
3.00 
2.93 
3.13 
2.96 
3.33 
3.34 
3.35 
3.87 
4.20 
5-21 
5.91 
5.99 
6.7 1 
8.47 

11.1 
14.2 
16.5 

Notes 

t 
t 
t 
t 
7 
tS 
tS 
t 
tS 
t 
t 
t 
t 
t 
t 
t 

t 

t 
t 

S 

Uoto/M = 98 
r- 

A 
1 

7 

0.173 

0.340 

0.500 

0.654 

0.654 

0.803 

1-02 

1.22 

1.48 

1.72 

1.72 

1.95 

2-17 

2.37 

2-55 

2 F  

0.032 

0.129 

0.268 

0441 

0.460 

0.646 

1.05 

1.39 

1.90 

2.51 

2-57 

2.98 

3.58 

4.37 

4.70 

Z2 Notes 

0.032 t 

0.129 t 

0.268 t 

0.441 t 

0.460 t 

0.646 t 
1.05 

1.38 

1-90 

2.51 

2.56 

2.97 

3.57 

4.35 

4.68 

t Tagging-wire diameter = 0.0127mm. If  no dagger in note column, then diameter 

$ Length of resistance thermometer w 0.5mm. If no double-dagger in note column, 
= 0.127mm. 

then length x 5min. 
TABLE 1. Dispersion da ta  
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r 

FIGURE 3. Stationary dispersion. (a) Short times. ( b )  Long times. Open points, Uoto/M = 42; 
solid points, Uoto/M = 98. 

Resistance ther- Tagging-wire diameter (mm) 
mometer length ,-‘------7 

(mm) 0.127 0.0127 

5.0 0 A 
0-5 0 V 
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Lagrangian microscale 

The technique of Uberoi & Corrsin (1953) was used for computing the Lagrangian 
microscale from dispersion data. Since ( 1 )  can be written in the form 

&?i?(7) = j' (7 - 7')gL(7') d7', 

gL (7) = 1 - (.'/I.:) + O ( T ~ )  

0 
then 

can be substituted in it: 

1 =c[1--T+o(~4) 1 7 2  as r + O ,  
2 6 a, 

whence 

Thus, by plotting z 2 / ~ 2  against r2 and estimating the slope of the faired curve at  
72 = 0, the Lagrangian microscale can be computed. 

In figure 4 the (stationary, dimensionless) microscale is determined by the 
method just described and is found to lie between 1.5 and 1.8. To calculate the 
microscale (of the decaying flow) corresponding to a given tagging time to defined 
by 

a,2 = - a2{gL[7(t ,  to)],,,Q)/at2 

a2/at2 is transformed to d 2 / h 2  using the definition of r. Since mathematics re- 
quires that d[9L(7)j ,=0/d7 = 0 the simple relationship 

at = at,a,/c = a, 

results. Then for Uot,/M = 42 (to = 0.195s), a, (or a,) is bounded by approxi- 
mately 69 and 83 ms. 

Lagrangian integral scale 

From its definition (a), and using ( 1 )  it  is simple to show that the equivalent 
stationary Lagrangian integral scale is T, = lim d [ $ Z 2 ( ~ ) ] / d ~ .  Thus, by measuring 

the slope of the Z2(7)  curve plotted in figure 3(b), the dimensionless integral 
time scale was found to be 2.36. Since the asymptotic slope might not have been 
reached, this value is considered to be a lower bound. A more precise estimate 
will be made in the next, section. 

As with the microscale, an integral time scale corresponding to a given tagging 
time can be calculated. If the integral time scale in the decaying flow is defined by 

T+m 
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i 0 U0t,lM=42 

0 UatalM=98 

Apparent source at T =  -0.008 
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0 1 2 3 4 5 

7 3  

FIGURE 4. Determination of microscale. 

then a change of integration variable to r gives 

%(to) is not as simple t o  calculate as was at, since the Lagrangian correlation 
coefficient must first be computed. This would be avoided if (4) could be inte- 
grated by parts to give d2BL(r)/dr2 = $Z2(r). When this was attempted, the 
result obtained was 

The term involving the dispersion integral diverges ( Z z  and C are positive) and 
thus, supposedly, so does a t  least one of the other terms on the right-hand side. 
Therefore, the indirect method (equation (4)) must be used to obtain %(to). 

Lagrangian velocity correlation coeficient function 
The Lagrangian velocity correlation coefficient function was computed by 
trial and error, using the micro- and integral scales just computed. The resulting 
correlation is shown in figure 5 and the subsequently computed dispersion curve 
is compared with the dispersion data in figure 6. The dispersion corresponding 
to the correlation lies almost within the scatter of the data. Considerably more 
effort is required to improve the fit. 

To calculate the integral scale, the correlation curves were extrapolated 
as shown in the figure. The stationary dimensionless integral scale T, is 2 4 ,  
including ;t contribution from the extrapolated tail of 8 %. This corresponds to 
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FIGURE 5. Lagrangian and Eulerian correlation coefficients. 0, Eulerian spacetime 
correlation (Comte-Bellot & Corrsin 1971); gL, Lagrangian correlation (vertical lines 
represent range 1.50 < h, 6 1.85). 

a stationary integral scale at Uoto/M = 42 of 1lOms. The integral scale in the 
decaying flow was computed to be 240 ms but includes a 24 yo contribution from 
the extrapolated tail, certainly decreasing the accuracy. 

7. Comparisons of Lagrangian and Eulerian correlations and scales 
Figure 5 compares the experimental Lagrangian and Eulerian correlation 

functions. We see that BL(?) 2 SE(7), and that there is a strong contrast, 

[l --SL(7)] < [l -a,(7)] for small 7. 

A qualitative open question is whether there are general grounds far expecting 
the Lagrangian velocity correlation in time to be greater than or less than the 
basic Eulerian one (i.e. in an Eulerian frame in which the mean velocity is 
everywhere zero). The experimental results collected in figure 5 indicate that 
gL(7) 2 BE(7), except possibly at  large r ,  where both functions BL, .9ZE < 1. 
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FIGURE 6. Measured and calculated dispersion. (a) Short times. ( b )  Long times. -, mea- 
sured; ---, calculated fromplottedLagrangian correlation; - -- ,calculated from Eulerian 
spacetime correlation. 

Although simple similarity assumptions give roughly equal time microscales, 
some intuitive notions suggest that the Lagrangian microscale is the larger 
(Corrsin 1963); this wouldimply9L > L2ZEfor small7. Kraichnan (1964), however, 
presented both intuitive arguments for the reverse behaviour, and a hypothetical 
random flow in which this occurred. 

The most recent relevant work is the Riley & Patterson (1972) calculation 
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of the two functions in three-dimensional,isotropic, decaying turbulence obtained 
by digital computation of the Navier-Stokes equations. They found .9ZL >WE 
for small r and&?’, < W E  for large r.  Their time microscales were of the same order 
of magnitude, in contrast to the results presented here. Uncertainties in their 
calculation include the possible influence of the initial conditions assumed. Also, 
their turbulence Reynolds number R, is about & of that used here. 

Other relevant work includes the estimate based on Corrsin’s ‘independence 
hypothesis’ (1959, 1962), which must be correct a t  large r and may sometimes 
be crudely useful a t  smaller r (Saffman 1963). It is easy to show that it gives 
gL(r)  < gE(r) :  for simplicity, we write only one space dimension, calling the 
Eulerian time correlation function Rg(x, r )  and the particle displacement proba- 
bility density function Px(x; r). Then 

9&) = R;(O,T) 

and the independence hypothesis is 

m 

g L ( r )  = 1 Rg(x, r )  Pz(x; r )  dx. 

It is easy to see that, if the Rg isocorrelation contours are convex in x, r space, 
then 

Substituting this inequality into the integral, and using the fact that 

- m  

Rg(z, 7) < Rg(0, 7) = RE(7). 

Kraichnan (1970) gets the same result from his ‘direct interaction hypothesis’. 
The idea of a random walk with both Lagrangian and Eulerian properties was 

introduced by Lumley & Corrsin (1959), and studied in some detail by Patterson 
& Corrsin (1966). It is interesting to ask about the relative shapes of .9ZL(r) and 
gE(r )  for this simpler stochastic process. They did not seek the general mathe- 
matical answer, but ensemble-averaged machine computations on seven different 
ensembles showed a tendency towards 

gL(7) G R~(u’T ,T )  < ~ E ( T )  

for small and moderate r, and 

~ L ( T )  G ~ E ( T )  (with 9 L  < g E )  

for large r. 
Finally, we should mention the ad hoc turbulent estimate by Frenkiel (1948; 

see also Peskin 1965), which also resulted in the Lagrangian time microscale 
being smaller than the Eulerian one, corresponding to .9ZL < .5TE for small r. 

The measured Lagrangian and Eulerian time scales (table 2) are compared 
with theoretical estimates in table 3. These estimates assume large turbulence 
Reynolds numbers R,, so that the ‘inertial subrange’ form for the various 
spectra, $ x q‘w2 (8 is the dissipation rate and w the frequency), could be used to 
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Lagrangian Eulerian Eulerian 
time (ms) length (ern)? time (ms) t 

Microscale ar = 76 A, = 0.484 P E  = 6.2 
Integral scale T,= 110 L, = 1.27 TE = 84 

(L, = 2.40) 

t Measured by Comte-Bellot & Corrsin (1971). 

TABLE 2. Measured scales and notation; RAo = 71.6, u’ = 22.2cm/s 

Values 
Prediction calculated Reference 

(all ratios O( 1)) from data for prediction 

2.3 Corrsin (1953) 
Uberoi & 

pJ) t 
3.4 Corrsin (1962) 

T d P f  1.0 Corrsin (1963) 
Saffman (1963) 
Tennekes & 
Lumley (1972) 

T9-IT.E 1.3 Corrsin (1963) 
a.T/PE 12 Corrsin (1963) 

TABLE 3. Comparison of theory with experiment 

estimate 

relatively small R, z 70. 
Tennekes & Lumley (1972, pp. 275-278) have noted that Corrsin’s integral 

time scale estimates were partially inconsistent because they dealt with non-zero 
integral scales while putting the Lagrangian and Eulerian frequency spectra 
equal to zero at  small frequencies. In  the absence of explicit information, they 
suggest assuming the spectra constant from zero to the frequency which is roughly 
the inverse of the integral time scale. This improvement can change some 
estimates by a factor as large as 2-0. 

It seems likely that estimates of the Lagrangian correlation function will 
require at  least the two-point, space-time Eulerian correlation in a frame 
relative to which there is no mean flow [Lumley (1962) showed that correlations 
in the two kinds of co-ordinates are in fact uniquely related only at  the functional, 
i.e. infinite order, level]. Yet several authors (cf. Pasquill 1962, p. 97; Philip 
1967) have suggested that the Lagrangian correlation and the Eulerian spatial 
correlation are identical in shape with only a different scale of the independent 
variable. In  the experiment described here, the ratio v’Tr/Lg of the integral 
scales is 1.9 while the ratio v’ar/h, of the microscales is 3.5. The former ratio is 
within a factor oftwo of previous measurements of the ratio of the integral scales: 
Snyder & Lumley (i971) obtained 3 while Pasquill (1962) suggests 4 (an average 
of eight values which range from l e i  to 8.5). However, the disparity between 

w”(w) do. Thus, the discrepancies are due, at  least partially, to the 1: 
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the micro- and integral scale ratios indicates that the original assumption of simi- 
larity of shape is incorrect. The principal point to be made is that there is no 
basic reason to expect the Lagrangian correlation in time to be directly related 
to the Eulerian correlation in space. Philip (1967) suggested an extension depen- 
dent on the turbulence level. By dimensional reasoning, Snyder & Lumley 
(1971) pointed out that the correlations cannot be similar in shape. 

8. Conclusions 
(i) The mean temperature profile behind a heating wire spanning an isotropic 

turbulence (approximately the probability density of the lateral displacement 
of a fluid particle) is Gaussian within the accuracy of measurement, supporting 
earlier results. The maximum scatter on a typical profile is less than 2 % of the 
peak. 

(ii) The measured Lagrangian velocity microscale of time is much larger 
than the Eulerian microscale of the turbulent velocity observed in a frame 
moving with the mean flow, reported by Comte-Bellot & Corrsin (1971). 

(iii) The stationary Lagrangian time integral scale is about 30 yo larger 
than that of the Eulerian correlation moving with the mean flow. 

(iv) The Lagrangian velocity correlation coefficient was calculated and com- 
pared with the simplest Eulerian velocity correlation in time, i.e. that moving 
with the mean flow (figure 5). As implied by (ii) and (iii), they are rather different 
in shape. 

(v) A realistic assumption of self-preservation of the particle velocities was 
made to calculate the Lagrangian correlation coefficient. This assumption 
collapsed the data taken with the source at two different stages of decay, veri- 
fying the self-preservation assumption. The recasting of the results into those 
for a (hypothetical) non-decaying isotropic turbulence should be useful for com- 
parison with future theories; theories tend to  be simpler for non-decaying 
isotropic turbulence. 

This work was supported primarily by the Atomic Energy Commission, con- 
tract AEC AT (1 11) 3284. We thank A. Y .-s. Kuo for his preliminary work on this 
research. 
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